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Finite-difference calculations require the generation of a grid for the region of interest. A 
zonal approach, wherein. the given region is subdivided into zones and the grid for each zone 
is generated independently, makes the grid-generation process for complicated topologies and 
for regions requiring selective grid refinement a fairly simple task. This approach results in 
new boundaries within the given region, that is, zonal boundaries at the interfaces of the 
various zones. The zonal-boundary scheme (the integration scheme used to update the points 
on the zonal boundary) for the Euler equations must be conservative, accurate, stable, and 
applicable to general curvilinear coordinate systems. A zonal-boundary scheme with these 
desirable properties is developed in this study. The scheme is designed for explicit, tirst-order- 
accurate integration schemes but can be moditied to accommodate second-order-accurate 
explicit and implicit integration schemes. Results for inviscid flow, including supersonic flow 
over a cylinder, blast-wave diffraction by a ramp, and one-dimensional shock-tube flow are 
obtained on zonal grids. The conservative nature of the zonal-boundary scheme permits the 
smooth transition of the discontinuities associated with these flows from one zone to another. 
The calculations also demonstrate the continuity of contour lines across zonal boundaries that 
can be achieved with the present zonal scheme. 0 1986 Academic Press, Inc. 

INTRODUCTION 

The numerical solution of a partial differential equation using a finite-difference 
or a finite-element method requires the generation of a grid for the region of 
interest. The grid-generation process can be quite complicated when the topology of 
the region itself is complicated (e.g., an aircraft configuration). A second factor that 
contributes to the complexity of grid generation is the necessity to cluster grid 
points in regions where the dependent variables and their gradients change rapidly 
(selective grid refinement). 

The use of a zonal approach, wherein the region of interest is divided into a num- 
ber of zones and a grid is generated for each zone independent of other zones, 
alleviates both the complex-topology and the selective-grid-refinement problems. 
Figure la shows the flow region associated with a combination of two airfoils. The 
region is multiply connected and hence difficult to discretize with a single grid 
system. The division of the flow field into five zones, as in Fig. la, results in simple, 
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four-sided regions which can be discretized easily. Figure lb illustrates how a region 
requiring selective grid refinement can be discretized with the help of a zonal 
approach. The shock pattern shown in this figure is a result of the diffraction of a 
planar shock wave by a ramp. The ramp angle and incident shock Mach number 
were chosen to yield a double Mach reflection. A very fine mesh is required to 
resolve the complicated shock structure in zone 1, but a relatively coarse mesh is 
sufficient to resolve the flow features in zone 2. This change in mesh-point density 
can be achieved very easily with the help of zonal grids (results of such an approach 
are presented in a later section). 

The division of a given region into zones introduces new boundaries in the 
calculation: the zonal boundaries. Since the grid for each region is generated 

a 

h ZONE 1 
Y (FINE GRID) 

ZONAL sbUNDARY 

ABC-KINKED REFLECTED SHOCK 
CD-FIRST MACH STEM 

A 
CE-INCIDENT SHOCK 

FIG. 1. Use of zonal grids in simplifying grid generation. (a) Zoning of multiply connected region to 
simplify grid generation process. (b) Zoning of a flow region that requires selective grid refinement. 
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independently, the grid lines of two adjoining regions may align (continuous grids) 
or may not align (discontinuous grids) with each other. Even in the case of con- 
tinuous grids, a sudden change in grid spacing or grid-line orientation across the 
zonal boundary may give rise to discontinuities in the transformation metrics 
(metric-discontinuous grids). Figure 2 shows the different types of grids mentioned 
above. It should be noted that in Figs. 2b-d the adjacent zones meet along a com- 
mon line and do not overlap; such nonoverlapping grids will be referred to as 
patched grids in the rest of the paper. 

In order that information be transferred from one zone to another accurately, it 
is important to treat grid points on the zonal boundaries with care. The emphasis in 
this study is on the proper treatment of zonal boundaries for calculations involving 
one set of partial differential equations that govern fluid flow: the Euler equations. 
The nonlinear nature of these equations permits solutions with discontinuities such 
as shocks and slip surfaces. In order that such discontinuities assume the right 
strength and physical location it is imperative that the finite-difference scheme used 
for the calculation be conservative. In a zonal calculation it is important that the 
zonal boundaries are also treated in a conservative manner so that the discon- 
tinuities can move freely across these boundaries. The zonal-boundary condition 
developed in this study is fully conservative and hence permits the movement of dis- 
continuities across zonal boundaries with minimal distortion of the solution. The 
scheme is designed for both discontinuous and metric-discontinuous grids. 

a CONTINUOUS GRID b METRIC DISCONTINUOUS GRID 

c METRIC DISCONTINOIJS GRID d DISCONTINUOUS GRID 

FIG. 2. Types of grids used in finite-difference calculations: (a) continuous; (b) metric-discontinuous; 
(c) metric-discontinuous; (d) discontinuous. 
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Earlier work in the area of zonal-grid calculations includes that of Cambier et aE. 
Cl], who analyzed the zonal-boundary problem for a system of hyperbolic 
equations and used the compatibility equations to develop a zonal-boundary 
scheme. Good results are presented for transonic channel flow. However, the use of 
the compatibility equations results in a zonal-boundary scheme that is not conser- 
vative and, hence, unsuitable for problems in which flow discontinuities move from 
one zone to another. Hessenius and Pulliam [2] present a conservative zonal-boun- 
dary scheme for implicit integration methods like the Beam-Warming method [3]. 
Their results stress the need for a conservative zonal-boundary scheme. However, 
Hessenius and Pulliam do not address the problem of discontinuous metrics or dis- 
continuous grids across zonal boundaries. Rai, Hessenius, and Chakravarthy [4] 
present results obtained on metric-discontinuous grids; the integration scheme use 
is the Osher upwind scheme. The proper choice of transformation metrics in the 
calculation of the fluxes makes the scheme fully conservative at both interior- and 
zonal-boundary points. Test cases include shocked flow through a nozzle, super- 
sonic flow over a cylinder, and blast-wave diffraction by a ramp. Reference [S] 
presents a conservative zonal-boundary condition for problems in one spatial 
dimension. The primary emphasis of this study is the refinement of the mesh in 
regions of large solution error. In addition to refinement of the grid in space the 
problem of using different time-steps in different regions is also addressed. 

Although [ 1, 2,4, 5 ] present results obtained by integrating the Euler equations 
on zonal grids, related work has also been done using the transonic full-potential 
equation. Typical of this effort is the work of Atta [6] and Atta and Vadyak [7]. 
The approach in [6,7], though zonal, does not use the patched-grid concept (the 
present study deals exclusively with patched grids) but instead uses the overlaid 
grid concept, that is, the zones used in the calculation overlap. An advantage of this 
approach is that zones need not match perfectly with their neighbors. Reference [g] 
gives results obtained on overlaid grids in conjunction with the stream-function 
approach. 

Some disadvantages of overlaid grids are 

(1) a problem in n spatial dimensions requires interpolation in n dimensions 
(to transfer information from one grid onto another), whereas patched grids require 
only an (n - l)-dimensional interpolation (the details are given in a later section ); 

(2) maintaining global conservation seems to be more difficult with overlaid 
grids; and 

(3) the accuracy and convergence speed of the calculation seems to depend 
on the degree of overlap of the zones and the relative size of each zone [6], thus 
introducing a certain amount of undesirable empiricism in the formulation. 

However, the fact that zones can (and should) overlap, may result in a certain 
amount of flexibility in generating grids in three dimensions. A second advantage of 
overlaid grids may lie in the ease with which grids can be moved relative to each 
other (for calculations involving bodies that move relative to each other). 
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References [9, lo] give patched-grid results for the potential and full-potential 
equations; the problem of conservation of fluxes is not addressed. 

A zonal-boundary scheme for patched grids is developed.in the next section. It is 
designed for explicit, first-order-accurate integration schemes. The integration 

schemes used in this study are the Osher [ll] and the split-flux [12] schemes. The 
zonal-boundary scheme is fully conservative and has been found to be stable and 
accurate even under severe test conditions such as strong discontinuities passing 
through zonal boundaries. The use of the present zonal-boundary scheme does not 
affect the convergence rate of the calculation relative to a single-zone calculation. 

Results are presented for the cases of supersonic flow over a cylinder, blast-wave 
diffraction by a ramp, and the one-dimensional shock-tube problem solved on a 
two-dimensional grid. The captured discontinuities are oscillation-free because of 
the first-order accuracy of the integration schemes, and, in the case of the Osher 
scheme, the discontinuities are also very sharp. The discontinuities were found to 
move freely across zonal boundaries. 

THE ZONAL-BOUNDARY SCHEME 

Consider the unsteady Euler equations in two dimensions: 

Qz+E,+F,=O. 

The vectors Q, E, and F are given by 

E= F= 

PV WV 
i 1 

p+pv2 ’ 

(e+p)v 

(1) 

(2) 

where p is the density, p is the pressure, u and v are the velocities in the x and y 
directions, respectively, and e is the total energy per unit volume. An explicit con- 
servative finite-difference scheme for Eq. (1) can be written as 

(3) 

where gj+ 112.k and fij,k+ 112 are numerical fluxes that are consistent with the physical 
fluxes E and F and are evaluated at the nth time-level. The region of interest being 
considered is shown in Fig. 3. Equation (3) can be alternatively written as 

y (Q$C* -Q~k)+‘y(E;+1/2,k-E;.--1/2,k) fAx(F;;k+l,2-&,k- l/2)=0. (4) 
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k = kmax + l/2 

k=1/2 

k 1 mm 

FIG. 3. Grid to illustrate global conservation property of conservative difference operators. 

In this form the various terms in the equation can be easily interpreted; for exam- 
ple, the first term 

represents the rate of increase of the variable Qi,k in the ceil ABCD (Fig. 3). The 
term 

represents the net influx of mass, momentum, and energy into the cell through the 
sides AB and CD, and the term 

represents the net influx of the same quantities through the sides AC and BD. 
A summation of the term 
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overall grid points yields [using Eq. (4)] 

s/y r-Y Ax,py 
(Q::‘-Qjf,) 

j=l k=l 

jmax 

= Ax 1 (&l/Z - t,kmax + l/2) 
j=l 

kmax 

+ ‘Y C (‘I/V - Ejmax + l/&k). (5) 
k=l 

That is, S is only a sum of the boundary fluxes; the interior fluxes cancel each other 
out because the difference scheme [Eq. (3)] is conservative. Equation (5) represents 
the global-conservation property of any scheme that can be represented as in 
Eq. (3). 

Consider the grids shown in Fig. 4. The line AB represents the zonal boundary 
that separates the two grids that are used to discretize the given region. Let 1 and m 
be the indices used in the x and y directions, respectively, in zone 1 and let j and k 
be the corresponding indices for zone 2. Note that m and k increase in opposite 
directions. This choice of indices was made to simplify the notation used to develop 
the zonal-boundary scheme and need not be adhered to in a general zonal code. Let 
M represent the time-step for both zones. A superscript within parentheses will 
denote the zone to which a given quantity belongs; for example, Ax”’ denotes the 
mesh spacing in the x direction in zone 1. 

One condition that must be satisfied across the zonal boundary is the continuity 
of the dependent variables. This condition can be easily satisfied by integrating the 
equations of motion to update Q on one side of the zonal boundary and inter- 
polating these variables to obtain the updated variables on the other side of the 

ZONE 2 

k 

THIS LINE 
CORRESPONDS 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1/l I I I I 
TO m = 312, k = II2 

-r 1 
Z&NE 1 

FIG. 4. Two-zone grid to illustrate zonal scheme in Cartesian coordinates. 
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zonal boundary. This interpolation results in the dependent variables being con- 
tinuous (across the zonal boundary) to the order of accuracy of the interpolation 
scheme. A linear interpolation scheme was used to obtain the results presented in 
this study. 

Assume that the zonal-boundary points of zone 2 are to be updated using the 
finite-difference scheme of Eq. (3). Th is calculation requires the fluxes F’,:)/2. The 
question of how to calculate these fluxes introduces the second condition that is to 
be satisfied at the zonal boundary in a natural way; that is, these fluxes have to be 
calculated such that global conservation is maintained. In other words, a sum- 
mation of [dx”)dy(‘)/dt] AQ!,: and [A~(~‘Ay”~/dt] AQ$ over all the cells in the 
region of interest [as was done in Eq. (5)] should once again result in only the 
boundary fluxes. The sum should not contain any residual fluxes near the zonal 
boundary. Note that cells corresponding to the zonal-boundary points of zone 1 are 
not to be included in this summation. This is because the area that these cells 
represent has already been accounted for with the inclusion of the celis 
corresponding to the zonal-boundary points of zone 2 (a sum of the cell areas 
included in the above summation should result in the total area covered by the IWS 

zones). A typical cell (RSTU) of a zonal-boundary point ( j, 1) is shown in Fig. 4. 
The points R and S are midpoints of the cells in which R and S he, and the points 
T and U are obtained as follows: The constant j lines of zone 2 are extrapolated 
into zone 1 to intersect the line CD (CD correspond to m = 5 in zone 1 and k = + in 
zone 2). The intersection points have the indices (j, $j. Point T is midway between 
the points ( j+ 1, 4) and (j, +), and point U is midway between points ( j, 4) and 
(j-- 1, f). 

The global-conservation property can be shown to be satisfied if the following 
relationship is satisfied: 

A close examination of Eq. (6) shows that each side of this equation is nothing but 
a discrete form of the line integral of the numerical flux 8 along the line CD in 
Fig. 4, and the equation itself represents flux conservation across the zonai boun- 
dary. Equation (6) is only a necessary condition and is not suffkient to define the 
fluxes & in a physically meaningful way [the &j,& cannot be obtained from 
Eq. (6) alone since Eq. (6) does not uniquely specify the I$$,]. 

Assume that the %“.;i,2 are obtained by interpolating the &$,; that is, 
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where the N,, are interpolation coefficients and p and q define the set of fluxes of 
zone 1 that will be used in the interpolation. The third and final condition to be met 
at the zonal boundary (one that is fundamental to the interpolation being carried 
out) is that 

f N,,=l. 
I=p 

We now describe a very simple way of obtaining the interpolation coefkients N,, 
such that Eqs. (6) and (8) are automatically satisfied. Let the line CD in Fig. 5 
correspond to the line CD in Fig. 4. The dots (Fig. 5) represent the grid points of 
zone 1 and the crosses represent those of zone 2. Representative numerical values of 
pji’/2 are plotted on the positive y axis. Assume a piecewise, constant variation of 
i$s,, that is, fi& is constant between xI~),,~ 3,2 and x!:)~,~ 3,2. Consider a point of 
z&e 2, ( j, $). Let E be midway between (j - 1, t) and (j, i) and F be midway 
between ( j, 4) and ( j + I, t). The Q,tj2 are now calculated from 

or 

(9) 

where the values of N,, are given by 

0 if ~(1) lf t/z, 4i’,,2 -j%,2 

Nj,/ = 
0 if x{:‘,,~, x$!!~,~>x~$,,~ (10) 

[min(xt2) J+ 1123 xj:),,,) - max(xj2_)1,2, 4!!,,, II 
$3 - x(2’ otherwise. 

J+ 112 J- 112 

FIG. 5. Piecewise constant variation of the numerical flux P as a function of x or s. 
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The simple expressions for Nil in Eq. (10) are valid only for a piecewise constant 
variation of the numerical fluxes. A piecewise linear or any other variation would 
result in different formulae for the Nj,!. Equation (10) in an indirect manner, also 
yields the endpoints in the interpolation, p and 9 (p and q include only that set of 
fluxes of zone 1 that are multiplied by a nonzero interpolation coefficient for a given 
flux of zone 2). The end fluxes &j,, and pjz,, 1,2 are calculated as , 

The fluxes thus obtained satisfy Eq. (6) automatically, and the interpolation coef- 
ficients defined by Eqs. (9)-( 11) satisfy Eq. (8). The shaded areas in Fig. 5 represent 
the values of the integrals in Eqs. (9) and (11). 

The foregoing discussion pertained to simple rectangular grids. The treatment of 
the zonal-boundary points was reduced to 

(1) updating the points of zone 2 using a specified difference scheme, and 

(2) updating the points of zone 1 by interpolating the dependent variables at 
the grid points of zone 2. 

The fluxes used to update the zonal points of zone 2 were obtained using a “con- 
servative interpolation technique” that satisfied flux conservation across the zonal 
boundary. The extension of the method to arbitrary curvilinear grid systems is 
straightforward and is outlined below. 

Consider the curvilinear grids used to discretize the region shown in Fig. 6. 
Establishing two independent-variable transformations 

t(i) = t, 

p = (“)(X, y, t), 
i 

1 i= for zone 1 
2 for zone 2 

p = q”‘(X, y, t), 

and applying these transformations to Eq. (1) we obtain 
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The notation ,@“)[Q gci’] and P”[Q ~“‘1 is used 
quantities on the metrics of the transformation. 
schemes used to integrate Eq. (13) be given by 

to show the dependence of these 
Let the conservative difference 

and 

pt.2, 
1.k f W 

- j?‘!‘, 

+ 4’2’ 
/.k--PLO 

’ 

(15) 

(16) 

where ./?(‘I and p” are, once again, numerical fluxes but are consistent with the 
transformed fluxes E;(i) and E(‘). The interior points of each zone are updated using 
the appropriate metrics and dependent variables. At the zonal boundary, once 
again, the grid points of one zone are updated by integrating the equations of 
motion (say, zone 2) and those in the other zone (say, zone 1) are updated by inter- 
polating the dependent variables of the first zone. 

A typical cell RSTU associated with the zonal boundary point (j, 1) of zone 2 is 
shown in Fig. 6. The points R, S, T, and U are defined as in the previous case. The 
metrics of the transformation at the point ( j, 1) are defined in a manner consistent 
with the shape and size of the cell RSTU, that is, 

Flux conservation across the line CD (as in the previous case) requires that the 
following condition be satisfied: 

jmax - 1 lmax - 1 
my?,2 + 5%x,l,2 1 + c Q,,z = @(,‘I,, + aL,3,21+ 1 &2. (17) 

j=2 I=2 

Equation (17) assumes that A<“’ and Aq(‘) = 1. To satisfy Eq. (17), a running 
parameter s is established along the line CD. The quantity s represents the distance 
of a point from the point C along the curve CD. Figure 5 shows the line CD 
stretched into a straight line along the s axis. Representative numerical values of 
flit, are plotted on the positive y axis and a piecewise constant variation of @j,$ is 
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ZONAL BOUNDARY 

FIG. 6. Two-zone grid to illustrate zonal scheme in curviiinear coordinates. 

assumed as before. Defining the points E and I; as before, Eq. (17) can be satisfied 
exactly by evaluating g),i’/* from 

The N,,, can be shown to satisfy Eq. (6). The term [sj:),,, -~jSr,~j in the 
denominator of the integral in Eq. (18) serves to convert the numerical flux &i2 
into a flux per unit length (the metrics contained within the numerical flux take the 
length of the side of the cell into account). The integration process reintroduces a 
length parameter. Equation (18) can be made very similar to Eq. (9) by making the 
following approximations: 

and 

581/62/Z-15 



484 

Defining 

MAN MOHAN RAI 

C-3)) 

and making use of the approximations in Eq. (19), Eq. (18) can be written as 

The analogy between Eqs. (9) and (18) is now apparent via Eq. (21). It should be 
noted that although the preceding approximations help to clarify the analogy 
between Eqs. (9) and (18) they are not required for the development of the theory. 
The end fluxes @1),2 and FE=!21 Imax,l,2 can now be obtained in a similar manner from 

The preceding method of obtaining the F’,;‘/2 [Eq. (IS)] is not free-stream preser- 
ving. However, a repeated integration of the governing equations with free-stream 
conditions everywhere (as initial conditions) and without boundary conditions on a 
grid of the type shown in Fig. 6 resulted in only a 0.1 % drift in the density in the 
vicinity of the zonal boundary. It can be shown (see Appendix) that the drift in free- 
stream conditions near the zonal boundary is proportional to the curvature of the 
zonal boundary and is caused by terms that are second order in magnitude. Hence, 
it behooves the user to use zonal boundaries with moderate curvature. 

The zonal-boundary technique has thus far been developed for a region divided 
into two adjacent zones. The technique, however, is not restricted to two-zone 
calculations but can be generalized to an arbitrary number of zones positioned 
arbitrarily with respect to each other. As an example of using multiple zones, the 
region shown in Fig. 7 is divided into four zones with the use of three zonal boun- 
daries. The lines along which a flux balance is carried out are AC, FG, DC, and EB. 
The shaded areas depict typical cell areas for points situated on the zonal boun- 
daries. Grid points that belong to only one zonal boundary usually have four-sided 



ZONAL BOUNDARIES FOR EULER EQUATIONS 485 

ZONAL 
BOUNDARY 2’ 

ZONE 2 

M 
ZONAL BOUNDARY 3 

ZONE 3 

ZONAL BOUNDARY 1 

FIG. 7. Four-zone grid to illustrate zonal scheme in curvilinear coordinates. 

cell areas. However, zonal grid points that are close to the intersection of two 
or more zonal boundaries may sometimes be required to have cell areas that are 
bounded by more than four sides (point Z in Fig. 7). These nonstandard cell shapes 
are required to cover the entire region by cell areas corresponding to grid points 
that are updated by integrating the equations of motion. The cell areas 
corresponding to zonal-boundary points can be easily determined, once the lines 
along which a flux balance is carried out are established. 

The first step in a zonal calculation (after the zones have been established and.a 
grid has been generated for each zone) is to determine the lines along which a flux 
balance will be carried out. Fig. 7 shows one particular choice of “flux balance 
lines.” Table I lists the ways in which zonal boundary points of each zone are 
updated for this choice of flux balance lines. It was found that for the first-order 
accurate integration schemes used in this study the choice of flux-balance lines has 
very little effect on the accuracy of the solution. The next step is to establish 
distance parameters (like s in the preceding development) along each of the flux- 
balance lines. The interior points are then updated, using a standard integration 
scheme, and the zonal-boundary points that have four-sided cell areas are updated, 
using the integrals developed earlier. 

Zonal-boundary points that have cell areas that are bounded by more than four 
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TABLE I 

Type of Update for the Zonal-Boundary Points of Each Zone 

Zone Zonal boundary Type of Zonal boundary Type of 
No. No. update No. update 

Interpolation 
Interpolation 
Integration 
Integration 

Interpolation 
Integration 

Interpolation 
Integration 

sides require a special definition of the fluxes used in the integration. Consider the 
point I in Fig. 7. Assume that the indices of this point are (j, k), j in the <-direction 
and k in the q-direction. The fluxes kj3+)1,2,k[Q, (j$)1,2,k], gj,i)- 1,2[Q, qj,i)- 1,2], and 
@+ l/z C Q, r,$?+ I,2 1 are easily available. The metrics tjy 1,2,k, qj,iJ- 1,3, and ~Ij,i)+ 1,2 
are obtained using the sides KL, LM, and FK, respectively, and central differences, 
for example, 

t-Xg~3llj.k + l/2 = (X)K - (XI,. 

The flux $j3’1,2,k[Q, (j?,,,,] is evaluated from 

TO account for the side BC, the modified flux &- 1,2[Q, qj,i)- 1,2] is used instead of 
@“.;I- 1,2[Q, yj,iJP 112] in the integration scheme. The modified flux is given by 

INTEGRATION SCHEMES 

The previous section dealt with the conservative treatment of zonal boundaries. It 
was assumed that a conservative finite-difference scheme, for which the numerical 
fluxes kj, 1,Z,k and pjk + 1,2 were easily defined, was available. The results in this 
study were obtained with the first-order-accurate versions of the Osher scheme and 
the split-flux scheme of Steger and Warming. The definitions of the numerical fluxes 
for the two schemes are given in this section. 
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For the Osher scheme, the numerical fluxes fii+ 1,/2.k and Fj,k + 1,2 are defined as 

The integrals are evaluated along subpaths in state space that are parellel to the 
right eigenvectors of the matrices aE/:jaQ and aF/;jaQ. The “+” subintegrals along 
each subpath are identically zero if the corresponding eigenvalue is negative all 
along the subpath and the “-” subintegrals are identically zero if the 
corresponding eigenvalue is positive throughout the path. These integrals (when 
they are not zero) can be shown to be simply evaluated as the difference in fluxes 
between the end points of the associated subpath. Details of the scheme can be 
found in [4, 111. 

The numerical fluxes for the split-flux scheme can be easily written as 

‘@j+1/2,k=g‘-(Qj+l.k> &+1/2,k)+E+(Qj.k, <,+1/2.k),’ 

Fj,k + l/2 =F-(Qj.k+,, rj.k+l/2)fFt(Qf,k~ qj.k+1/2)? 

where 

and P’ and F;- are defined similarly. Further details of the scheme can be found in 
Cl21. 

The metrics at the half points ( j + l/2, k) and (j, k + l/2) are evaluated using the 
following averaging technique 

(x?)i+ 1/2.k = i[tXv)j.k + CXqIj+ I.kl? 

(xt)j,k+ l/2 = &[(x<)j.k + (X:)j,k+ 11, 

where the (Xt)j.k, (X<)j.k+l, tXvI)j.k, and (~,,h+~,k are evaluated using central dif- 
ferences. The derivatives of y at the half points can be obtained by replacing x with 
y in Eqs. (28). 
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RESULTS 

Results are presented in this section for inviscid problems in two dimensions. The 
test cases include supersonic flow past a cylinder, blast wave diffraction by a ramp, 
and the one-dimensional shock-tube problem solved on a two-dimensional grid. 
The first-order-accurate versions of the Osher and split-flux schemes are used to 
integrate the equations of motion at the interior points of the grids, and the zonal- 
boundary scheme described earlier is used to update the points on the zonal boun- 
daries. 

Cylinder in a Supersonic Free Stream 

The first problem solved was that of a cylinder in a supersonic free stream 
(M, = 2) with the associated bow shock. Figure 8 shows the grid used for the 
calculation. The region of interest was divided into two zones separated by the 
zonal-boundary AB. The discontinuity of the constant-c grid lines at the zonal 
boundary is evident. The values of the dependent variables at all the grid points 
were set equal to their free-stream values initially. The equations of motion together 
with the various boundary conditions were integrated (including the zonal-boun- 
dary conditions) until the solution converged to its steady-state value. Figure 9 
shows the pressure contours obtained at convergence with the Osher scheme. The 

ZONAL BOUNDARY 

EXIT BOUNDARY 

BOUNDARY 

FIG. 8. Grid for two-zone cylinder calculation. 
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A 

FIG. 9. Isobars obtained at convergence for the cylinder with the Osher scheme 

contour lines can be seen to be continuous across the zonal boundary (MI); in fact, 
the lines seem to have an almost continuous slope across AB. The square symbols 
in this figure (and the following figures pertaining to the cylinder) represent the 
shock position predicted by another numerical approach in [13]. The captured 
shock is a little to the left of the predicted shock. This discrepancy is characteristic 
of the first-order-accurate Osher scheme and will disappear with the use of a 
second-order-accurate integration scheme [4]. Figure 10 shows the pressure con- 
tours obtained with the split-flux scheme. The quality of these contours in the 
vicinity of the zonal boundary is comparable to that obtained with the ShU 

scheme. The captured shock, however, is smeared to a greater extent. As before, the 
captured shock lies to the left of the predicted shock, a result of the first-order-. 
accurate nature of the integration scheme. 

A general-purpose zonal Euler code should have the capability of handhng as 
many zones as necessary to cover the region of interest. To demonstrate the 
generality of the present zonal scheme and its applicability in a general-purpose 
zonal Euler code, the region of interest for the cylinder was divided into four zones 
instead of two zones (as in the previous case). The zones and the grids for each 
zone are shown in Fig. 11. A wide variation in cell shapes and sizes can be seen 
across each of the three zonal boundaries. 



FIG. 10. Isobars obtained at convergence for the cylinder with the split-flux scheme. 

ZONAL l3OUNDARY 3 

ZONAL BOUNDARY 1 

FIG. 11. Grid for four-zone cylinder calculation. 
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The values of the dependent variables at all the grid points were once again set 
equal to free-stream values initially. The bow shock associated with this flow field 
first appears at the body surface and then moves outward to its steady-state 
position. Figures 12-17 depict isobars and show the progression of the shock wave 
through the grid system as a function of the number of time-steps. Figure 17 shows 
the isobars obtained at convergence. The contours away from the shock in Figs. 
12-17 are continuous across zonal boundaries. Small discontinuities in the contour 
lines are observed at zonal boundaries in the vicinity of the shock. This 
phenomenon is due to a difference in the interpolation subroutine used in the 
plotting package and the one used to enfore continuity of the dependent variables 
in the integration package (the contours in each zone are plotted independent of 
the other zones). The difference becomes evident only in large gradient regions, for 
example, near shocks. The smooth transition of the shock through all the zonal 
boundaries is apparent from Figs. 12-17. This smooth transition is possible because 
of the fully conservative nature of the zonal-boundary scheme. 

Shock- Tube Problem 

To determine the effect of the zonal-boundary conditions on the time-accuracy of 
a solution, the one-dimensional shock-tube problem was solved on a two-dimen- 

” = 200 

ZONAL 

q 

ZONAL 

BOUNDARY ‘I 

ZONAL 

BOUNDARY 2 

BOUNDARY 3 

FIG. 12. Isobars after 200 integration steps for the cylinder, using the @her scheme. 



= 400 

FIG. 13. Isobars after 400 integration steps for the cylinder, using the Osher scheme. 

” = 600 

FIG. 14. Isobars after 600 integration steps for the cylinder, using the Osher scheme. 
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FIG. 15. Isobars after 800 integration steps for the cylinder, using the Osher scheme. 

FIG. 16. Isobars after 1,000 integration steps for the cylinder. using the Qsher scheme 
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FIG. 17. Isobars obtained at convergence for the cylinder, using the Osher scheme. 
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FIG. 18. Grid for four-zone shock-tube calculation. 
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FIG. 19. Isopycnics for the shock-tube problem soon after the rupture of the diaphragm. 

sional grid. The region of interest was divided into four zones. The different zones 
and the grid for each zone are shown in Fig. 18. As in the previous case, cell 
volumes vary considerably across zonal boundaries. Initially, the diaphragm at the 
center separates the left and right states given by 

pL = 2.0, pR= 1.0, 

UL = 0.0, UR = 0.0, 

0, = 0.0, VR = 0.0: 

pL = 2.0, p/J, = 1.0. 

PREDICTED I 

PREDICTED POSITION OF SHOCK 

FIG. 20. Isopycnics for the shock-tube problem (shock just before AB) 
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FIG. 21. Isopycnics for the shock-tube problem (shock passing through AB). 

The diaphragm is then ruptured and a shock, contact, and rarefaction system is set 
up in the region with the shock and contact moving to the right and the rarefaction 
moving to the left. Reflection boundary conditions were imposed on the upper and 
lower boundaries because of the one-dimensional nature of the true solution. The 
two-dimensional calculation exhibits variations in both spatial dimensions because 
of the zonal boundaries and the smeared nature of the discontinuities. Fixed-end 
boundary conditions were used at the left and right boundaries. 

Figures 19-23 show density contours at various positions in time. In the upper 
half of each of these figures the exact one-dimensional density profile is plotted as a 
function of X. The results presented in these figures were obtained with the Osher 

FIG. 22. Isopycnics for the shock-tube problem (shock to the right of AB). 
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scheme. The first-order-accurate Osher scheme is extremely dissipative for transient 
problems with moving discontinuities, and, hence, the shock and!, contact profiles 
(in the form of density contours) shown in Figs. 19-23 are smeared to a greater 
extent than evidenced in the cylinder calculations. Figure 19 shows constant-density 
contours immediately after the rupturing of the diaphragm. Three distinct waves 
(shock, contact, and rarefaction) can be seen in this figure. Figure 20 shows the 
density contours just before the shock encounters the vertical zonal boundary (A 
Figure 21 shows the shock moving through AB with minimal distortion, and 
Fig. 22 shows the density contours just after the shock has moved through AB. 
Figure 23 shows the contact discontinuity beginning to pass through AB. An 
interesting feature in Figs. 19-23 is that the solution transitions from the low-error 
solution (closely spaced contour lines) to the high-error solution (widely spaced 
contour lines) across the zonal-boundary CD to satisfy the continuity requirement 
at this boundary. 

Though it is difficult to say whether the calculated solution is time-accurate, 
some measure of the time-accuracy of the solution can be determined by finding the 
centers of the smeared shock and contact, and comparing the locations of these cen- 
ters with the exact locations of the discontinuities. This has been done in 
Figs. 2&23; the arrows represent the centers of the smeared discontinuities. To the 
extent to which such a comparison can be held valid, it can be seen that the zonal 
calculation is time-accurate. The calculated position of the shock is close to the 
exact position of the shock before and after it passes through the zonal-boundary 
AB. 

The shock-tube problem can be made to have an asymptotic solution in com- 
putational space by using a grid that expands in the x direction at the rate 

x,=x. 

C 

: 

-1 

-1 
__- 

FIG. 23. Isopycnics for the shock-tube problem (contact passing through AB) 
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FIG. 24. Isopycnics obtained at convergence for the shock-tube problem. 

Since the solution then possesses an asymptotic limit in computational time, after 
the initial transients, the Osher scheme yields very sharp discontinuity profiles. 
Figure 24 shows the density contours obtained at convergence from such a 
calculation. The quality of the contour lines near the horizontal zonal boundaries is 
comparable to that obtained in the cylinder calculations, 

Blast- Wave Diffraction by a Ramp 

As stated earlier, one of the main advantages of being able to perform zonal 
calculations is that one can selectively refine the grid in certain areas of the flow 
region without having to maintain grid-line continuity across zonal boundaries. The 
problem of blast-wave diffraction by a ramp with its attendant complex shock pat- 
terns is a typical example of a problem requiring selective refinement of the grid. 
The grid used for the calculation performed in this study is shown in Fig. 25. The 
calculation was performed with an incident-shock Mach number of 7.1, a ramp 
angle of 49”, and a ratio of specific heats (y) of 1.55. A double Mach reflection 
occurs for this choice of flow parameters. The discontinuities for this configuration 
include the incident shock, a kinked reflected shock, two Mach stems, and two slip 
lines. The region in which the triple point and Mach stems occur (the area covered 
by zone 2) requires a very fine grid to resolve all the flow features. A very coarse 
grid is sufficient for the area covered by zone 3 because the independent variables 
are constant in that region. 

The solution to the blast-wave diffraction problem is self-similar in time and, 
hence, can be- made to have an asymptotic limit in computational space with the 
help of a similarity transformation. Details of the similarity transformation can be 
found in [14]. Figure 26 shows the isobars obtained at convergence with the Osher 
scheme. The kinked reflected shock (ABC), the incident shock (CD), and the first 



FIG. 26. Isobars obtained at convergence for the blast-wave problem using the &her scheme. 

ZONAL BOUNDARIES FOR EULER EQUATIONS 

FIG. 25. Grid for three-zone blast-wave calculation. 
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FIG. 27. Isopycnics obtained at convergence for the blast-wave problem using the Osher scheme. 

A 

Mach stem (CE) are seen to be captured very sharply. In addition, the second 
Mach stem (much weaker than the first) can be seen emanating from the point B. 
The reflected shock passes through the zonal boundary FG without any distortion; 
it merely becomes thinner .in zone 2 because of the tine grid used in this zone. 
Figure 27 shows the density contours obtained at convergence. The additional 
feature that this figure brings to light is the first slip line emanating from the triple 
point C. The second slip line, which is suppose to emerge from point B, is much 
weaker than all the other discontinuities and hence cannot be seen in this figure. 

CONCLUSIONS 

A conservative zonal-boundary scheme that permits the use of discontinuous 
zonal grids has been developed for the Euler equations. The scheme is designed for 
explicit, first-order-accurate integration schemes but can be extended to meet the 
requirements of implicit and explicit second-order schemes. The integration techni- 
ques used in this study are the Osher and split-flux schemes. The special logic 
required to implement the zonal-boundary conditions was found to be fairly simple 
to incorporate into existing codes. 

Test problems that have been solved with the zonal technique include inviscid 
supersonic flow over a cylinder, blast-wave diffraction by a ramp, and the one- 
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dimensional shock-tube problem. Results in the form of pressure and density con- 
tours are presented. The contours are observed to be continuous across zonal boun- 
daries (except in the vicinity of discontinuities). Discontinuities were found to move 
freely and with minimal distortion through zonal boundaries. The zonal-boundary 
scheme was found to be stable even under severe test conditions such as strong dis- 
continuities passing through the zonal boundaries. The results demonstrate the 
feasibility of using a zonal approach with discontinuous grids in solving com- 
plicated flow problems involving discontinuous solutions. 

The first-order-accurate schemes used in this study are insufficient to produce 
very accurate results for a general class of problems. Also, the explicit nature of 
these schemes results in long convergence times when the grid used is suffl~i~~t~y 
fine (because of Courant number limitations). Hence, the principal objective of 
current research is to extend the present zonal scheme so that it can be used with 
second-order accurate, implicit integration schemes. 

APPENDIX: ERROR ANALYSIS 

The use of Eqs. (18) and (22) in calculating the fluxes @j2, while maintaining 
flux conservation across the line CD (Fig. 6), does not result in free-stream preser- 
vation. It can be shown that defining F’,:)2 as 

will result in a free-stream preserving zonal scheme (private communication, 
Chakravarthy, Rockwell Science Center). However, Eq. (Al) is not flux-conserving 
(to the author’s knowledge it is not possible to make the zonal scheme in its present 
form both flux-conserving and free-stream preserving). The metrics qj.1,2 in Eq. (Al ) 
can be obtained from the inverse metrics 

The points T and U are shown in Fig. 6. The flux-conserving definition of the zonal 
fluxes [from Eq. (18)] is 



502 MAN MOHAN RAI 

Subtracting Eq. (Al) from Eq. (A3), we obtain the error vector (the vector that 
produces a drift in free-stream conditions) as 

(A41 

An analysis of the quantity $‘il[Q, r”‘]/(x: + y:)“* for the split-flux scheme shows 
that it can be written as 

pi)[Q r(i)] > 
[I-+(i) + y&,1 

t/2 = UCP) + b/P + c[d’q* + d[cP’] [p”‘] + e[jp]2, (A5) 

where a, b, c, d, and e are vector functions of x,, ys and the vector Q and are, thus, 
continuous across the zonal boundary. The terms 8) and /J”’ are given by 

&) X<(l) 
= [x$,, + y;,ll]1’2z 

Pi) = [x;(j) ;;;&] 112) 

(A61 

and are also continuous across the zonal boundary (to the accuracy with which the 
metrics are calculated), because they represent the orientation of the zonal boun- 
dary. Making the approximations given in Eq. (19), substituting Eq. (A5) into 
Eq. (A4), and using the piecewise constant variation of &j2 between grid points, 
the following is obtained: 

Er = [,y!*) I + 112 -s,!“,,,] ‘f N,.l{a,[aj” - rx,!“] + bJ#’ - /I,!“‘] 
I=p 

+ c,[#‘+ d2)] [a{‘) - a,!“] + d,[@)fljl’ -a,!“@:“] J 

+ e,[Pj’) + #‘)I [B(l) - @‘)] }, (A71 

where the N,, satisfy Eq. (8). Since the ~2s and p’s are continuous across the zonal 
boundary we can write 

aj” = a,*) f Kl f? [s& 
ds -@,,,I + O[s,!z,),,, -q,,,1*, 

4 
WI 

where the KI are constants. Substituting Eq. (AS) into Eq. (A7) reduces Er to 
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where C, and C2 are vector constants. Thus, the drift in free-stream values 
introduced by using Eq. (18) instead of Eq. (Al ) in evaluating F& is due to a term 
that is second-order in magnitude. Since Er is primarily a function of doljds and 
dfl/ds, the use of zonal boundaries that do not have large curvatures (dct/ds and 
dp/ds are a measure of the curvature of the boundary) results in small values of the 
drift in the dependent variables. The drift in free-stream values is caused by the dual 
representation of the flux balance line CD in Fig. 6 (it is represented differently by 
the zonal boundary points of zones 1 and 2). The problem will disappear when a 
single consistent representation of CD that uses the zonal boundary points of both 
zones in defining the cells along the zonal boundary is used. This will mean that cell 
boundaries that lie along CD will in general consist of multiple line segments. This 
approach is currently being investigated. 
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